Как из смартфона сделать эхолот. Открытие года: эхолот, который найдет всю рыбу Изготовление датчика для эхолота своими руками

В настоящее время эхолоты для рыбалки очень популярны среди рыбаков и спортсменов.
Что дает эхолот рыбаку?
Ответ на этот вопрос, казалось бы, весьма прост – эхолот ищет и находит рыбу, и это является его основным предназначением. Однако однозначность этого ответа может казаться абсолютно справедливой только начинающему рыболову. Каждый мало-мальски грамотный рыбак знает, что рыба не распределяется равномерно по пространству водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими изменениями глубин и даже перепадами температур между слоями воды. Интерес могут представлять коряги, камни, ямы, растительность. Иными словами, рыба не только ищет, где глубже, но и где ей лучше ночевать, охотиться, маскироваться, кормиться. Поэтому первостепенная задача эхолота – это определение глубин водоема и изучение рельефа дна.
Структурная схема, которая поясняет устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с.

Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика. Спадом тактовый импульс запускает передатчик А1, и излучатель-датчик BQ1 излучает в направлении дна короткий (40 мкс) ультразвуковой зондирующий импульс. Одновременно открывается электронный ключ S1, и колебания образцовой частоты 7500 Гц от генератора G2 поступают на цифровой счетчик РС1.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципиальная схема эхолота с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Необходимую для самовозбуждения генератора положительную обратную связь создают цепи R19C9 и R20C11." Генератор формирует импульсы длительностью 40 мкс с радиочастотным заполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс длительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 использован а амплитудном детекторе, транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1.

В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4. Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания - с выхода приемника через транзистор VT15.

Генератор импульсов с образцовой частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной обратной связи, выводящей элемент на линейный участок характеристики. Это создает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки.

Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диод VD4 на входы R микросхем.

Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена постоянной времени цепи R28C15.

Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 .

Кнопка SB1 ("Контроль") служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число. Через некоторое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

Эхолот смонтирован в коробке, склеенной из ударопрочного полистирола. Большинство деталей размещено на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них (рис. 3) смонтирован передатчик, на другой (рис. 4) - приемник, на третьей (рис. 5 - цифровая часть эхолота. Платы закреплены на дюралюминиевой пластине размерами 172Х72 мм, вложенной в крышку коробки. В пластине и крышке просверлены отверстия под выключатель питания Q1 (МТ-1), кнопку SB1 (КМ1-1) и гнездо ВР-74-Ф коаксиального разъема XI, а также вырезано окно для цифровых индикаторов.

В эхолоте применены резисторы МЛТ, конденсаторы КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие транзисторы этих серий, МП42Б - на МП25, КТ315Г-на КТ315В. Микросхемы серии К176 заменимы соответствующими аналогами серии К561, вместо микросхемы К176ИЕЗ (DD4) можно применить К176ИЕ4. Если эхолот будет использован на глубине не более 10 м, счетчик DD4 и индикатор HG3 можно не устанавливать.

Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с ферритовым (600НН) подстроечником диаметром 6 мм. Длина намотки - 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II - 160 витков. Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16Х10Х4,5. Обмотка I содержит 2Х 180 витков провода ПЭВ-2, 0,12, обмотка 11-16 витков провода ПЭВ-2, 0,39. Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм из органического стекла. Диаметр щечек - 15, расстояние между ними - 9 мм. Подстроечник - от броневого магнитопровода СБ-1а из карбонильного железа.

Ультразвуковой излучатель-датчик эхолота изготовляют на основе круглой пластины диаметром 40 и толщиной 10 мм из титаната бария. К ее посеребренным плоскостям сплавом Вуда припаивают тонкие (диаметром 0,2 мм) проводники-выводы. Датчик собирают в алюминиевом стакане от оксидного конденсатора диаметром 45...50 мм (высоту - 23...25 мм - уточняют при сборке). В центре дна стакана сверлят отверстие под штуцер, через который будет входить коаксиальный кабель (РК-75-4-16, длина 1...2,5 м), соединяющий датчик с эхолотом. Пластину датчика приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм.

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник - к выводу обкладки датчика, приклеенной к резиновому диску, вывод другой обкладки - к оплетке кабеля. После этого диск с пластиной вдвигают в стакан, пропуская кабель в отверстие штуцера, и закрепляют штуцер гайкой. Поверхность титанатовой пластины должна быть углублена в стакан на 2 мм ниже его кромки. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После затвердевания смолы поверхность датчика шлифуют мелкозернистой наждачной бумагой до получения гладкой плоскости. К свободному концу кабеля припаивают ответную часть разъема XI.

Для налаживания эхолота необходимы осциллограф, цифровой частотомер и блок питания напряжением 9 В. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88,8. При нажатии на кнопку SB1 должно появляться случайное число, которое с приходом очередного тактового импульса должно вновь сменяться числом 88,8.

Далее налаживают передатчик. Для этого к эхолоту подключают датчик, а осциллограф, работающий в режиме ждущей развертки,- к обмотке 11 трансформатора Т1. На экране осциллографа с приходом каждого тактового импульса должен появляться импульс с радиочастотным заполнением. Подстроечником трансформатора Т1 (если необходимо, подбирают конденсатор С10) добиваются максимальной амплитуды импульса, которая должна быть не менее 70 В.

Следующий этап - налаживание генератора импульсов образцовой частоты. Для этого частотомер через резистор сопротивлением 5,1 кОм присоединяют к выводу 4 микросхемы DD1. На частоту 7500 Гц генератор настраивают подстроечником катушки L1. Если при этом подстроечник занимает положение, далекое от среднего, подбирают конденсатор С18.

Приемник (а также модулятор) лучше всего настраивать по эхо-сигналам, как это описано в [I]. Для этого датчик прикрепляют резиновым жгутом к торцевой стенке пластмассовой коробки размерами 300Х100Х100 мм (с целью устранения воздушного зазора между датчиком и стенкой ее смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф. Критерием правильной настройки приемника, модулятора передатчика, а также качества ультразвукового датчика является число наблюдаемых на экране эхосигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцевых стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С13 в модуляторе передатчика и изменяют положение подстроечника трансформатора Т1.

Для регулировки устройства задержки включения приемника впаивают на место диод VD3, заменяют резистор R18 переменным (сопротивлением 10 кОм) и с его помощью добиваются исчезновения двух первых эхосигналов на экране осциллографа. Измерив сопротивление введенной части переменного резистора, его заменяют постоянным такого же сопротивления. После настройки число эхосигналов на экране осциллографа должно быть не менее 20.

Для измерения глубины водоема датчик лучше всего закрепить на поплавке с таким расчетом, чтобы нижняя его часть была погружена в воду на 10...20 мм. Можно прикрепить датчик к шесту, с помощью которого его погружают в воду кратковременно, на время измерения глубины. При использовании эхолота в плоскодонной алюминиевой лодке для измерения небольших глубин (до 2 м) датчик можно приклеить к днищу внутри лодки.

Следует отметить, что в солнечные дни яркость свечения цифровых индикаторов может оказаться недостаточной. Повысить ее можно заменой батареи "Корунд" ("Крона") источником питания с несколько большим напряжением, например, батареи, составленной из восьми аккумуляторов Д-0,25 (никаких изменений схемы и конструкции прибора это не потребует).

Немного теории

Как c помощью эхолота мы видим рыбу?
Звуковые волны эхолота отражаются от физических движимых объектов (т.е. мест, где скорость распространения звука изменяется). Рыба в основном состоит из воды, но разница между скоростью звука в воде и в газе, который находится в воздушном пузыре рыбы, настолько велика, что позволяет звуку отображаться и возвращаться. Воздушный пузырь позволяет рыбе удерживаться на определенной глубине без помощи плавников, (по тому-же принципу и подводные лодки построены). Поэтому с помощью эхолота мы «видим» не саму рыбу, а ее воздушный пузырь что, по большому счету, для рыбака все равно. Есть пузырь - есть и рыба. Но все-таки надо знать,что, каждый наполненный газом воздушный пузырь, как поток воздуха в трубе органа, имеет собственную естественную частоту. Когда пузырь достигают звуковые волны той же частоты, он резонирует, и частота резонанса в несколько раз выше, чем частота самой волны. Поэтому «цель» выглядит большей, чем есть на самом деле.

Если смотреть глубже, тон резонирования воздушных пузырей определяется давлением воды, размером и формой пузыря и физическими препятствиями внутри самой рыбы.
Эти факторы меняются, когда рыба движется вертикально сквозь разные глубины.

Как сонар показывает рыб?
На рисунке виден типичный «овал ногтя» (дуга), образуемый схемой движения одной рыбы от центра к углам либо угол конуса, когда лодка стоит. Тот же самый эффект может быть создан, если лодка движется, а рыба неподвижна. Но вы редко увидите эту идеальную дугу, поскольку рыба, которую вы ищете, все время перемещается за пределы дуги, а не обязательно по уровню или центру.Чем крупнее «овал ногтя», тем крупнее рыба, не так ли? Нет, необязательно.

Рыба одинакового размера, плывущая по центру дуги к поверхности, может находиться в дуге короткое время и поэтому давать мелкий отпечаток. Если же та же рыба прижимается ко дну и проходит по центру дуги, то попадет в целевую зону на более длительный период времени и даст более крупный сигнал. В общем говоря, рыба будет казаться меньше, чем ближе она к преобразователю, и крупнее, чем дальше от него.
Это прямо противоположно тому, что видят наши глаза при солнечном свете. Вариации в этом идеальном «овале ногтя» могут возникать по ряду причин. Рыба плавает вверх и вниз, она проходит через внешние границы дуги под неправильными углами, лодка движется то медленно, то быстро, рыба может быть так близко к дну, что частично попадает в «мертвую зону».Например, вы обнаружите, что косяк нужной рыбы, находящийся в тесном скоплении в горизонтальном пласте, образует большую дугу, но с углами, которые мало отличаются от отметки одной рыбы. Итак, вы увидите множество вариаций этой формы «овала ногтя», но помните, что она является обычным отображением, которое возвращается рыбой.
Есть одна ошибка, типичная для всех эхолотов, о которой знают или даже задумываются лишь немногие рыбаки, это то, что все КАЖЕТСЯ, как будто оно находится под лодкой, хотя на самом деле это не так.

Рисунок показывает то, что действительно происходит под водой с нашим звуковым конусом и наше впечатление о нем, основанные на мигающей шкале или двухмерном изображении.

На рисунке видно, как все эхолоты выдают ошибку в чтении рыбы, находящейся между лодкой и дном.
Это происходит из-за того, что прибор старается выстроить всю найденную рыбу в пределах конуса в одну прямую линию, которая убеждает нас, что рыба находится прямо под днищем лодки.
Также рисунок показывает нам, что происходит когда две (или более) рыбы обнаруживаются на том же самом расстоянии (от преобразователя), хотя на самом деле они находятся на разных концах конуса.
Все они помечаются эхолотом, как на одном расстоянии, и поэтому показываются как одна рыба.
Рыбалка с эхолотом очень интересная, к тому-же добавляет уверенности и в итоге - улова.

Cамодельный мини-эхолот на микроконтроллере Atmel ATMega8L

и

ЖКИ от мобильного телефона nokia3310

Представляю вашему вниманию авторскую разработку - самодельный мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию может повторить каждый желающий. Материал я старался изложить так, чтобы читателям в доступной форме дать побольше полезной информации по теме. Надеюсь, что повторение конструкции принесет Вам много удовольствия и пользы.

Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.

С уважением, Alex

Эхолот, сонар (sonar) - сокращение от SOund NAvigation and Ranging. Эхолот известен где-то с 40-х годов, технология была разработана во время Второй мировой войны для отслеживания вражеских подводных лодок. В 1957 году компания Lowrance выпустила первый в мире эхолот на транзисторах для спортивной рыбной ловли.

Эхолот состоит из таких основных функциональных блоков: микроконтроллер, передатчик, датчик-излучатель, приемник и дисплей. Процесс обнаружения дна (или рыбы) в упрощенном виде выглядит следующим образом: передатчик выдает электрический импульс, датчик-излучатель преобразует его в ультразвуковую волну и посылает в воду (частота этой ультразвуковой волны такова, что она не ощущается ни человеком, ни рыбой). Звуковая волна отражается от объекта (дно, рыба, другие объекты) и возвращается к датчику, который преобразует его в электрический сигнал (см. рисунок ниже).

Приемник усиливает этот возвращенный сигнал и посылает его в микропроцессор. Микропроцессор обрабатывает принятый с датчика сигнал и посылает его на дисплей, где мы уже видим изображение объектов и рельефа дна в удобном для нас виде.

На что следует обратить внимание: рельеф дна эхолот рисует только в движении. Это утверждение вытекает из принципа действия эхолота. Тоесть, если лодка неподвижна, то и информация о рельефе дна неизменна, и последовательность значений будет складываться из одинаковых, абсолютно идентичных значений. На экране при этом будет рисоваться прямая линия.

Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще Вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.

От эхолотов, описанных в моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.

Вся конструкция собрана в корпусе «Z14». Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА (в авторском варианте 23мА).

Теперь о возможностях эхолота. Рабочая частота 200 кГц и настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Моя конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4 м. Прибор показал отличные результаты. По мере возможности постараюсь протестировать работу эхолота на более больших глубинах, о чем будет сообщено читателям.

Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке ниже:

Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.

Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.

Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная - 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.

Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам?
Вариант 1: приобрести готовый датчик.
Вариант 2: изготовить самому из пьезокерамики ЦТС-19.

При прошивке микроконтроллера ATMega8L fuse bits выставить согласно картинке ниже:

Полная информация по изготовлению, настройке, прошивке и руководству по использованию мини-эхолота

смотрите в прилагаемом архиве!

Вопросы и пожелания _ самодельный эхолот _ мини-эхолот_files\
Инструкция _ самодельный эхолот _ мини-эхолот_files\
настройка _ самодельный эхолот _ мини-эхолот_files\
прошивки _ самодельный эхолот _ мини-эхолот_files\
ссылки _ самодельный эхолот _ мини-эхолот_files\
схема и описание _ самодельный эхолот _ мини-эхолот_files\
Теория _ самодельный эхолот _ мини-эхолот_files\
Файлы _ самодельный эхолот _ мини-эхолот_files\
фото устройства _ самодельный эхолот _ мини-эхолот_files\
eholot_v1.43.dch
eholot_v1.53.dch
pcb_v1.53_A4.doc
pcb_v1.53_components.doc
plata_v2.doc
0012.gif
firmware_demo_v1.0.hex
firmware_demo_v1.1.hex
firmware_demo_v1.2.hex
firmware_demo_v1.5.hex
Вопросы и пожелания _ самодельный эхолот _ мини-эхолот.html
Инструкция _ самодельный эхолот _ мини-эхолот.html
настройка _ самодельный эхолот _ мини-эхолот.html
прошивки _ самодельный эхолот _ мини-эхолот.html
ссылки _ самодельный эхолот _ мини-эхолот.html
схема и описание _ самодельный эхолот _ мини-эхолот.html
Теория _ самодельный эхолот _ мини-эхолот.html
Файлы _ самодельный эхолот _ мини-эхолот.html
фото устройства _ самодельный эхолот _ мини-эхолот.html
fuse_bits.jpg
gen400kHz.jpg
mini-sonar_circuit_v1.53.jpg
mini-sonar_review_01.jpg
MH2009V.pdf
SA614AD.pdf
mini-sonar_circuit_v1.43.PNG
mini-sonar_circuit_v1.43_800x600.png
Eholot_user_manual.zip

Самодельный эхолот рыбака своими руками

В текущее время эхолоты для рыбалки очень популярны посреди рыбаков и спортсменов.
Что дает эхолот рыбаку?
Ответ на этот вопрос, казалось бы, очень прост – эхолот отыскивает и находит рыбу, и это является его главным назначением. Но однозначность этого ответа может казаться полностью справедливой только начинающему рыболову. Каждый мало-мальски грамотный рыбак знает, что рыба не распределяется умеренно по месту водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими переменами глубин и даже перепадами температур меж слоями воды. Энтузиазм могут представлять коряги, камешки, ямы, растительность. Другими словами, рыба не только лишь отыскивает, где поглубже, да и где ей лучше ночевать, охотиться, маскироваться, питаться. Потому главная задачка эхолота – это определение глубин водоема и исследование рельефа дна.
Структурная схема, которая объясняет устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов устройства и обеспечивает его работу в автоматическом режиме. Генерируемые им недлинные (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с.

Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика. Спадом тактовый импульс запускает передатчик А1, и излучатель-датчик BQ1 испускает в направлении дна маленький (40 мкс) ультразвуковой зондирующий импульс. Сразу раскрывается электрический ключ S1, и колебания примерной частоты 7500 Гц от генератора G2 поступают на цифровой счетчик РС1.

По окончании работы передатчика приемник А2 раскрывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципная схема эхолота с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Нужную для самовозбуждения генератора положительную оборотную связь делают цепи R19C9 и R20C11.’ Генератор сформировывает импульсы продолжительностью 40 мкс с радиочастотным наполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс продолжительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 применен а амплитудном сенсоре, транзистор VT4 увеличивает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий всепостоянство характеристик выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1.

В приемнике использовано принудительное выключение одновибратора приемника при помощи транзистора VT7. На его базу через диодик VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 равномерно запирается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав заходит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4. Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15.

Генератор импульсов с примерной частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной оборотной связи, выводящей элемент на линейный участок свойства. Это делает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки.

Читайте так же

Сигнал примерной частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диодик VD4 на входы R микросхем.

Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена неизменной времени цепи R28C15.

Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 .

Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число. Через некое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

Дешевый беспроводной эхолот с Алиэкспресс для рыбалки.

Эхолот Заглавие программки: FishFinder (Erchang Искатель рыбы) Другие эхолоты : .

Эхолот на Arduino

Эхолот смонтирован в коробке, склеенной из ударопрочного полистирола. Большинство деталей размещено на трех печатных платах из фольгированного стеклотекстолита толщиной 1,5 мм. На одной из них (рис. 3) смонтирован передатчик, на другой (рис. 4) — приемник, на третьей (рис. 5 — цифровая часть эхолота. Платы закреплены на дюралюминиевой пластине размерами 172Х72 мм, вложенной в крышку коробки. В пластине и крышке просверлены отверстия под выключатель питания Q1 (МТ-1), кнопку SB1 (КМ1-1) и гнездо ВР-74-Ф коаксиального разъема XI, а также вырезано окно для цифровых индикаторов.

В эхолоте применены резисторы МЛТ, конденсаторы КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие транзисторы этих серий, МП42Б — на МП25, КТ315Г-на КТ315В. Микросхемы серии К176 заменимы соответствующими аналогами серии К561, вместо микросхемы К176ИЕЗ (DD4) можно применить К176ИЕ4. Если эхолот будет использован на глубине не более 10 м, счетчик DD4 и индикатор HG3 можно не устанавливать.

Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с ферритовым (600НН) подстроечником диаметром 6 мм. Длина намотки — 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II — 160 витков. Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16Х10Х4,5. Обмотка I содержит 2Х 180 витков провода ПЭВ-2, 0,12, обмотка 11-16 витков провода ПЭВ-2, 0,39. Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм из органического стекла. Диаметр щечек — 15, расстояние между ними — 9 мм. Подстроечник — от броневого магнитопровода СБ-1а из карбонильного железа.

Ультразвуковой излучатель-датчик эхолота изготовляют на основе круглой пластины диаметром 40 и толщиной 10 мм из титаната бария. К ее посеребренным плоскостям сплавом Вуда припаивают тонкие (диаметром 0,2 мм) проводники-выводы. Датчик собирают в алюминиевом стакане от оксидного конденсатора диаметром 45. 50 мм (высоту — 23. 25 мм — уточняют при сборке). В центре дна стакана сверлят отверстие под штуцер, через который будет входить коаксиальный кабель (РК-75-4-16, длина 1. 2,5 м), соединяющий датчик с эхолотом. Пластину датчика приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм.

При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник — к выводу обкладки датчика, приклеенной к резиновому диску, вывод другой обкладки — к оплетке кабеля. После этого диск с пластиной вдвигают в стакан, пропуская кабель в отверстие штуцера, и закрепляют штуцер гайкой. Поверхность титанатовой пластины должна быть углублена в стакан на 2 мм ниже его кромки. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После затвердевания смолы поверхность датчика шлифуют мелкозернистой наждачной бумагой до получения гладкой плоскости. К свободному концу кабеля припаивают ответную часть разъема XI.

Для налаживания эхолота необходимы осциллограф, цифровой частотомер и блок питания напряжением 9 В. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88,8. При нажатии на кнопку SB1 должно появляться случайное число, которое с приходом очередного тактового импульса должно вновь сменяться числом 88,8.

Читайте так же

Далее налаживают передатчик. Для этого к эхолоту подключают датчик, а осциллограф, работающий в режиме ждущей развертки,- к обмотке 11 трансформатора Т1. На экране осциллографа с приходом каждого тактового импульса должен появляться импульс с радиочастотным заполнением. Подстроечником трансформатора Т1 (если необходимо, подбирают конденсатор С10) добиваются максимальной амплитуды импульса, которая должна быть не менее 70 В.

Следующий этап — налаживание генератора импульсов образцовой частоты. Для этого частотомер через резистор сопротивлением 5,1 кОм присоединяют к выводу 4 микросхемы DD1. На частоту 7500 Гц генератор настраивают подстроечником катушки L1. Если при этом подстроечник занимает положение, далекое от среднего, подбирают конденсатор С18.

Приемник (а также модулятор) лучше всего настраивать по эхо-сигналам, как это описано в [I]. Для этого датчик прикрепляют резиновым жгутом к торцевой стенке пластмассовой коробки размерами 300Х100Х100 мм (с целью устранения воздушного зазора между датчиком и стенкой ее смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф. Критерием правильной настройки приемника, модулятора передатчика, а также качества ультразвукового датчика является число наблюдаемых на экране эхосигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцевых стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С13 в модуляторе передатчика и изменяют положение подстроечника трансформатора Т1.

Для регулировки устройства задержки включения приемника впаивают на место диод VD3, заменяют резистор R18 переменным (сопротивлением 10 кОм) и с его помощью добиваются исчезновения двух первых эхосигналов на экране осциллографа. Измерив сопротивление введенной части переменного резистора, его заменяют постоянным такого же сопротивления. После настройки число эхосигналов на экране осциллографа должно быть не менее 20.

Для измерения глубины водоема датчик лучше всего закрепить на поплавке с таким расчетом, чтобы нижняя его часть была погружена в воду на 10. 20 мм. Можно прикрепить датчик к шесту, с помощью которого его погружают в воду кратковременно, на время измерения глубины. При использовании эхолота в плоскодонной алюминиевой лодке для измерения небольших глубин (до 2 м) датчик можно приклеить к днищу внутри лодки.

Следует отметить, что в солнечные дни яркость свечения цифровых индикаторов может оказаться недостаточной. Повысить ее можно заменой батареи «Корунд» («Крона») источником питания с несколько большим напряжением, например, батареи, составленной из восьми аккумуляторов Д-0,25 (никаких изменений схемы и конструкции прибора это не потребует).

Электронный эхолот может быть полезен при самых разных подводных работах- не только для рыбалки.
Эхолот может быть изготовлен в двух вариантах: с пределами измерения глубины до 9,9 м (в его табло - два люминесцентных индикатора) и 59,9 м (три индикатора).
Прочие их характеристики одинаковы:
инструментальная погрешность - не более ±0,1 м,
рабочая частота - 170...240 кГц (зависит от резонансной частоты излучателя),
мощность в импульсе - 2,5 Вт.
Ультразвуковой излучатель он же и приемник эхосигнала - пластина из титаната бария диаметром 40 и толщиной 10 мм.
Источник питания эхолотов - батарея типа «Корунд».
Потребляемый ток - не более 19 и 25 мА (соответственно, в эхолотах для малых и больших глубин).
Габариты эхолотов - 175х75х45 мм, масса - 0,4 кг.

Принципиальная схема эхолокатора

Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы повторяются каждые 10 с. Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика.

Спадом тактовый импульс запускает передатчик А1 и излучатель BQ1 излучает в направлении дна короткий (40 мкс) ультразвуковой зондирующий импульс. Одновременно открывается электронный ключ S1 и колебания образцовой частоты от генератора G2 поступают на счетчик РС1.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается тем же BQ1 и закрывает ключ S1. Измерение закончено, на индикаторах счетчика РС1 высвечивается измеренная глубина.
Расчет глубины прост : при скорости распространения звука в воде 1500 м/с, за 1/7500 с фронт сигнала, проделывающего двойной путь, переместится на 0,2 м; и, соответственно, младшая единица на табло счетчика будет соответствовать глубине 0,1 м.

Очередной тактовый импульс вновь переведет счетчик РС1 в нулевое состояние и процесс повторится.

Принципиальная схема эхолота с пределом измерения глубины 59,9 м изображена на рис 2.

Его самовозбуждающийся на частоте ультразвукового излучателя BQ1 передатчик выполнен на транзисторах VT8, VT9. Включением-выключением передатчика управляет модулятор - ждущий одновибратор (VT11, VT12 и др.), подающий через свой ключ (VT10) питание на передатчик в течение 40 мкс.

Транзисторы VT1, VT2 в приемнике усиливают принятый пьезоэлементом BQ1 эхосигнал, транзистор VT3 детектирует их, а транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От прямого воздействия импульсов передатчика приемник защищается диодным ограничителем (R1, VD1, VD2).

В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с «+» источника питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность.

Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ (DD1.1), управляемый RS-триггером (DD1.3, DD1.4). Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания - с выхода приемника через транзистор VT15.

Генератор импульсов образцовой частоты (7500 Гц) собран на элементе DD1.2. Цепью R33, L1 он вводится в режим линейного усилителя, что создает условия для его возбуждения на частоте, зависящей от параметров контура L1 С 18. Точно на частоту 7500 Гц генератор выводят подстройкой L1.

Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающий через диод VD4 на R-входы этих микросхем.

Тактовый генератор собран на транзисторах VT13, VT14. Частота следования импульсов зависит от постоянной времени R28-C15.

Нити накала люминесцентных индикаторов HG1-HG3 питаются от преобразователя напряжения, выполненного на транзисторах VT17, VT18 и трансформаторе Т2.

Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При ее нажатии на ключ VT15 поступает закрывающий импульс и на табло эхолота появится какое-то случайное число. Через некоторое время тактовый импульс перезапустит эхолот, и, если он исправен, на табло возникнет число 88.8.

Все резисторы в эхолоте - типа МЛТ, конденсаторы - КЛС, КТК и К53-1. Транзисторы КТ312В и ГТ402И можно заменить на любые другие этих серий, МП42Б - на МП25„ КТ315Г - на КТ315В. Микросхемы серии К176 можно заменить на эквивалентные из серии К561. Если эхолот предполагается использовать на глубинах до 10 м, микросхему DD4 и индикатор HG3 можно не устанавливать.

Обмотки трансформатора Т1 намотаны проводом ПЭЛШО 0,15 на каркасе диаметром 8 мм с ферритовым (600НН) подстроечником диаметром 6 мм. Длина намотки - 20 мм. Обмотка I содержит 80 витков с отводом от середины, обмотка II - 160 витков.

Трансформатор Т2 выполнен на ферритовом (3000НМ) кольце типоразмера К16х 10х4,5 Обмотка I содержит 2х180 витков провода ПЭВ-2 0,12, обмотка II - 16 витков провода ПЭВ-2 0,39.

Катушка L1 (1500 витков провода ПЭВ-2 0,07) намотана между щечками на каркасе диаметром 6 мм. Диаметр щечек - 15, расстояние между ними - 9 мм. Подстроечник - из карбонильного железа (от броневого магнитопровода СБ-1а).

К посеребренным плоскостям пластины излучателя сплавом Вуда припаивают тонкие выводы. Излучатель собирают в алюминиевом стакане диаметром 45...50 мм (донная часть корпуса оксидного конденсатора). Его высоту - 23...25 мм - уточняют при сборке. В центре дна стакана сверлят отверстие под штуцер, через который будет выведен коаксиальный кабель длиной 1...1,25 м, соединяющий ультразвуковую головку с электронной частью эхолота. Пластину излучателя приклеивают клеем 88-Н к диску из мягкой микропористой резины толщиной 10 мм. При монтаже оплетку кабеля припаивают к штуцеру, центральный проводник - к выводу обкладки, приклеенной к резиновому диску, вывод другой обкладки излучателя - к оплетке кабеля. Собранный таким образом излучатель вдвигают в стакан. Поверхность пластины излучателя должна быть ниже кромки стакана на 2 мм. Стакан закрепляют строго вертикально и заливают до края эпоксидной смолой. После ее затведения торец излучателя шлифуют мелкозернистой наждачной бумагой до получения гладкой плоской поверхности. К свободному концу коаксиального кабеля припаивают ответную часть разъема X1.

Налаживание эхолота

Для налаживания эхолота потребуется осциллограф и цифровой частотомер. Включив питание, проверяют работоспособность счетного устройства: если оно исправно, то индикаторы должны высвечивать число 88.8.

Работу передатчика проверяют осциллографом, работающим в режиме ждущей развертки. Его подключают к обмотке II трансформатора Т1. С приходом каждого тактового импульса на экране осциллографа должен появляться радиочастотный импульс. Подстройкой трансформатора Т1 (грубо - подбором емкости конденсатора С 10) добиваются максимальной его амплитуды. Амплитуда радиоимпульса на пьезоизлучателе должна быть не меньше 70 В.

Для настройки генератора образцовой частоты потребуется частотомер. Его подключают через резистор сопротивлением 5,1 кОм к выходу (выв. 4) элемента DD1.2 и, изменяя положение подстроечника в катушке L1 (грубо - изменением емкости конденсатора С18), выставляют нужные 7500 Гц.

Приемник и модулятор настраивают по эхосигналам. Для этого излучатель прикрепляют резиновым жгутом к торцовой стенке пластмассовой коробки размером 300х100х100 мм (для устранения воздушного зазора это место смазывают техническим вазелином). Затем коробку заполняют водой, выпаивают из приемника диод VD3 и присоединяют к выходу приемника осциллограф. Критерием правильной настройки приемника, модулятора и качества ультразвукового излучателя является число наблюдаемых на экране эхо - сигналов, возникающих вследствие многократных отражений ультразвукового импульса от торцовых (разнесенных на 300 мм) стенок коробки. Для увеличения видимого числа импульсов подбирают резисторы R2 и R7 в приемнике, конденсатор С 13 в модуляторе и подстраивают трансформатор Т1.

Вернув на место диод VD3, приступают к регулировке задержки включения приемника. Она зависит от сопротивления резистора R18. Этот резистор заменяют переменным на 10 кОм и находят такую его величину, при которой на экране осциллографа исчезают первые два эхосигнала. Это сопротивление и должен иметь резистор R18. После настройки число эхосигналов на экране осциллографа должно быть не меньше 20.

Для измерения глубины водоема нижнюю часть ультразвуковой головки погружают в воду на 10...20 мм. Лучше иметь для нее специальный поплавок.

  • Необходима ли покупка эхолота на самом деле? ⇩
  • Численность лучей и угол обзора при выборе эхолота ⇩
  • Первостепенные компоненты эхолота и особенность их работы ⇩
  • Габариты и сезонность эхолотов ⇩
  • Сложность выбора между летним и зимним эхолотом ⇩
  • Условия выбора при покупке ⇩
  • Производитель и финансовая политика ⇩
  • Популярные эхолоты для рыбалки — рейтинг ⇩
  • Отзывы экспертов ⇩

Сейчас рыбакам представляется уникальная возможность приобрести максимальное количество необходимых снастей. Принадлежностей не бывает много, есть только самые необходимые.

В последнее время становится популярным на рыбалке эхолот. Мнения рыбаков, правда, на этот счет расходятся. Поэтому постараемся разобраться в функциональности инструмента.

Необходима ли покупка эхолота на самом деле?

С эхолотом процесс рыбалки может стать гораздо эффективней и комфортней. Работа устройства заключается в поиске рыбных мест. Это поможет не тратить время впустую. Не стоит надеяться, что прибор будет приманивать рыбу.

С помощью инструмента можно не только узнать о наличии рыбы, но также ознакомиться с дном водоема, определить его глубину и ландшафт.

Для того чтобы применение эхолота дало ожидаемый результат, надо разобраться как он работает.

Выбирая аппарат, стоит разобраться в некоторых вопросах:

  • Глубина водоема.
  • Многофункциональность эхолота для зимней и летней рыбалки.
  • Ценовая политика устройства.

Предназначены приборы для ловли с берега, плавательного средства. Выбор модели зависит от целевого назначения.

Численность лучей и угол обзора при выборе эхолота

При выборе эхолота стоит сконцентрировать внимание на классификацию по количеству сканируемых лучей.

Модели разделяются на четыре вида:

  1. Один луч. Угол обзора до 20 градусов.
  2. Два луча. Обзор в 60 градусов.
  3. Три луча. От 90 до 150 градусов.
  4. Четыре луча. 90 градусов.

Многолучевой эхолот звучит привлекательно, но так ли это на самом деле?

Большое количество лучей образует много «мертвых зон» и увидеть рыбу в такой области невозможно.

Кроме лучей, существует еще важный момент, на который надо обратить внимание, это частота.

Некоторые современные модели настроены на частоту от 150 до 200 кГц. Встречаются эхолоты двухлучевые имеющие частоту 50 и 200 килогерц.

Высокая частота позволяет показать на экране несколько рыб по отдельности, а не одним пятном.

Первостепенные компоненты эхолота и особенность их работы

Разновидностей становится все больше. Чтобы легче было подобрать определенную модель, следует знать определенные характеристики.

Основные технические параметры заключаются в следующем:

  • Дисплей. Больше пикселей – четкое изображение. Возможность настройки контраста. Для рыбалки на одном месте подойдет небольшой экран, для передвигающегося рыбака больше подойдет большой дисплей. Монитор с 3D изображением. Сочетаемость с цифровой аппаратурой (смартфон, планшет, GPS навигаторами).
  • Восприимчивость приема сигнала. Хороший приемник позволяет улавливать даже слабые сигналы, преобразовывая в импульсы. Образовавшиеся помехи можно устранить с помощью настройки чувствительности.
  • Возможность работы ночью.
  • Мощность передатчика. Большая мощность – качественный сигнал, хорошо для большой глубины.
  • Количество лучей. Наиболее точное расположение рыбы дает эхолот с одним лучом и узким углом обзора.
  • Частота преобразователя. Электрические импульсы преобразовывает в ультразвуковые волны.
  • Контрастность. Высокий уровень позволяет получать четкое изображение на экран даже при ярком солнце.
  • Корпус. Защита от ударов, влаги.

Приобретая эхолот, стоит досконально ознакомиться со всеми составляющими.

Габариты и сезонность эхолотов

В любой сезон рыбалки будет актуален инструмент. Зимой особенно. Тогда меньше времени потратится на поиски рыбного места.

Виды габаритов встречаются следующие:

  1. Компактные. Изящные размеры позволяют носить прибор в кармане одежды. Работает от батареек.
  2. Портативные. Укладывается в специальный рюкзак, удобно переносить. Использовать можно в любое время года.
  3. Тубусные. Подходит для зимней рыбалки. Питание от батареек.

Частота до 250 кГц – зависит от резонансной частоты излучателя.

Питание от батареи:

Эхолоты для малых глубин потребляют не больше 19 мА; для глубокого дна – 25 мА.

Размеры и вес будет зависеть от модели эхолота.

Во многие транцевые модели встраиваются датчики температуры. Это поможет сказать многое о перспективах рыбалки.

Появилась серия эхолотов с беспроводным датчиком. Удобно применять при спиннинговой рыбалке.

Тубусные эхолоты прекрасно можно использовать при подледной рыбалке, летом легко устанавливаются на лодки. Имеют вспомогательный измеритель бокового обзора.

Сложность выбора между летним и зимним эхолотом

Большинство изготовителей выпускают летние модели устройств, которые можно применять также зимой. Но лучше использовать их, если это редкие выезды на подледную рыбалку.

Для тех, кто предпочитает зимнюю рыбалку лучше приобрести зимние приборы. Они наиболее неуязвимы к минусовым температурам и с большей отдачей работают в лунках.

Условия выбора при покупке

Разнообразная ценовая политика на модели эхолотов ставит перед сложным выбором рыбаков.

Критерии выбора:

  • Масса и размер прибора. Важный параметр выбора модели для зимней рыбалки (холодоустойчивый, легкий).
  • GPS навигатор. Полезное устройство, если рыбалка проходит в труднопроходимых местах. Наличие карты дает возможность определить местонахождение.
  • Экран. Большое разрешение в пикселях, что дает четкость изображения. Для передвижения на быстроходной лодке подойдет эхолот с большим монитором.
  • Датчик. Некоторые модели оборудованы специфическими поплавками, позволяющими располагать прибор горизонтально.

Производитель и финансовая политика

Ценовая политика зависит от функциональности, рабочих параметров и размера.

В целом по цене эхолоты можно разграничить на три категории:

  • Низкая цена. Разновидность моделей имеет монохромный монитор, однолучевой, работает на глубине не более 10 метров. Выполняют свои основные функции.
  • Средний ценовой сегмент. Двухлучевые. Определяют местонахождение и размер рыбы. Подходят для зимней рыбалки.
  • Дорогие эхолоты. Приборы не предназначены для работы на мелководье. Используются на рыболовецких судах. Хорошо сканируют глубокие водоемы.

Цена будет обусловлена после определения цели использования.

Для определения рельефа и глубины дна подойдут недорогие модели эхолотов.

Популярные эхолоты для рыбалки — рейтинг

Многие изготавливаемые эхолоты восприимчивы к определению глубины, присутствию рыбы, изображению рельефа дна.

Среди большого ассортимента приборов, внимание заслуживают следующие производители:

Garmin Echo 550c. Усовершенствованная модель. Большой 5-ти дюймовый цветной монитор. Используемая технология HD-ID target-tracking дает возможность обрести четкое отображение рыбы, дна. Двухлучевой – 60 и 120 градусов. Трансдьюсер. Функция перемотки, паузы.

Lowrance Elite -7 HDI. Качественные картинки глубины, местонахождения рыбы обеспечиваются наличием методики Hybrid Dual Imaging. Навигатор, 7-ми дюймовый LED дисплей. Наличие Insight Genesis, предоставляет возможность создавать личные карты.

Lowrance Mark-5x Pro. Два луча, 5-ти дюймовый экран, водонепроницаемый корпус, работоспособность при температуре до -60 градусов. Является гарантией хорошей зимней рыбалки.

Eagle Trifinder-2. Распространенный вариант для рыбалки, где глубина не более 10 метров.

Humminbird PiranhaMAX 175xRU Portable. Двух лучевой датчик (16 градусов и 450 кГц; 28 градусов и 200 килогерц). Большое количество настроек под конкретные ситуации. Режим Fish ID допускает определение размера рыбы. Капитальный водонепроницаемый корпус. Налаженность оповещений определения глубины, пребывание рыбы. Подсвечивание для ночной рыбалки, определение температурного режима.

gastroguru © 2017